

APPENDIX D: State Contaminants with Notification Levels

Inclusion of the Notification Level (NL) and health effects language for contaminant concentrations detected above the NL is recommended, but not required.

Chemical	Notification Level	Health Effects Language (Optional)
Boron	1 mg/L	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.
n-Butylbenzene	260 µg/L	
sec-Butylbenzene	260 µg/L	
tert-Butylbenzene	260 µg/L	
Carbon Disulfide	160 µg/L	Carbon disulfide exposures resulted in decreased motor conduction velocity in people.
Chlorate	800 µg/L	Animal studies demonstrated that chlorate exposure in rats caused adverse effects to the pituitary and thyroid glands.
2-Chlorotoluene	140 µg/L	
4-Chlorotoluene	140 µg/L	2-Chlorotoluene exposures resulted in decrease in body weight gain in rats. 4-Chlorotoluene is expected to have health effects similar to those of 2-chlorotoluene.
Diazinon	1.2 µg/L	Diazinon exposures may result in neurotoxic effects.
Dichlorodifluoromethane [Freon 12]	1 mg/L	Dichlorodifluoromethane exposures resulted in reduced body weight in rats.
1,4-Dioxane	1 µg/L	1,4-Dioxane exposures resulted in cancer, based on studies in laboratory animals.
Ethylene Glycol	14 mg/L	Ethylene glycol exposures resulted in kidney toxicity in rats.
Formaldehyde	100 µg/L	Formaldehyde exposures resulted in reduced weight gain and histopathology in rats.
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine [HMX]	350 µg/L	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine exposures resulted in liver lesions in rats.
Isopropylbenzene	770 µg/L	Isopropylbenzene exposures resulted in increased kidney weight in rats.
Manganese	500 µg/L	Manganese exposures resulted in neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system.
Methyl Isobutyl Ketone [MIBK]	120 µg/L	Methyl isobutyl ketone exposures resulted in increased kidney and liver weight, and kidney pathology in rats.
Naphthalene	17 µg/L	Naphthalene exposures resulted in decreased body weight in rats.
N-Nitrosodiethylamine [NDEA]	10 ng/L	N-nitrosodiethylamine exposures resulted in cancer in a variety of laboratory animals.
N-Nitrosodimethylamine	10 ng/L	N-nitrosodimethylamine exposures resulted in cancer in a

Chemical	Notification Level	Health Effects Language (Optional)
[NDMA]		variety of laboratory animals.
N-Nitrosodi-n-propylamine [NDPA]	10 ng/L	N-nitrosodi-n-propylamine exposures resulted in cancer in a variety of laboratory animals.
Perfluorooctanoic Acid [PFOA]	5.1 ng/L ^{**}	Perfluorooctanoic acid exposures resulted in increased liver weight in laboratory animals.
Perfluorooctanesulfonic Acid [PFOS]	6.5 ng/L ^{**}	Perfluorooctanesulfonic acid exposures resulted in immune suppression, specifically, a decrease in antibody response to an exogenous antigen challenge.
Propachlor	90 µg/L	Propachlor exposures resulted in decrease in weight gain, decrease in food intake, and relative liver weight increase in rats.
n-Propylbenzene	260 µg/L	Exposures to cumene (isopropylene), a surrogate for n-propylbenzene, resulted in increased kidney weight in rats.
Hexahydro-1,3,5-trinitro-1-3-5-triazine [RDX]	300 ng/L	Hexahydro-1,3,5-trinitro-1-3-5-triazine exposures resulted in liver carcinomas and adenomas in female mice.
Tertiary Butyl Alcohol [TBA]	12 µg/L	Tert-butyl alcohol exposures resulted in cancer in laboratory animals.
1,2,4-Trimethylbenzene	330 µg/L	1,2,4-Trimethylbenzene exposures resulted in increased serum phosphorus levels in rats.
1,3,5-Trimethylbenzene	330 µg/L	1,3,5-Trimethylbenzene exposures resulted in increased serum phosphorus levels in rats.
2,4,6-Trinitrotoluene [TNT]	1 µg/L	2,4,6-Trinitrotoluene exposures resulted in urinary bladder transitional cell papillomas and squamous cell carcinomas in female rats.
Vanadium	50 µg/L	Vanadium exposures resulted in developmental and reproductive effects in rats.

** The July 2018 notification levels for PFOA of 14 ng/L and PFOS of 13 ng/L were superseded on August 22, 2019 by new notification levels of 5.1 ng/L for PFOA and 6.5 ng/L for PFOS.